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Abstract

Software package DREDMO of the Delft Hydraulics predicts the behaviour of seagoing
cutter dredges in near-shore conditions, which behaviour can be important with respect to the
construction of the dredge and the assessment of downtime. The motion behaviour of the
seagoing dredge has been described by non-linear Cummins Equations, which have to be
solved in the time domain.
The required input data on hydromechanic coefficients, retardation functions and frequency
domain wave load series can be derived with a newly developed pre-processing program
SEWAY-D. This program, based on the frequency domain ship motions program SEAWAY,
creates the hydromechanic input data file for DREDMO with a minimum risk on human input
errors and makes DREDMO much more accessible for less-specialist users.
This report describes the underlying hydromechanic theory of the new SEAWAY-D and
DREDMO releases. Also, comparisons with frequency domain results have been given.

1 Introduction

The prediction of the behaviour of cutter
dredges in near-shore conditions can be
important with respect to the construction
of the dredge and the assessment of
downtime. To be able to make downtime
predictions, the Delft Hydraulics together
with the Laboratory of Soil Movement and

the Ship Hydromechanics Laboratory
(both are laboratories of the Delft
University of Technology) developed the
computer code DREDMO [13] in the early
80’s. The behaviour of the seagoing
dredge has been described by non-linear
so-called Cummins Equations, which have
to be solved in the time domain. These
equations require hydromechanic
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coefficients, retardation functions and
wave load series as input, together with
geometric and operational data of the ship
and the operational working method.
The required input data – hydromechanic
coefficients, retardation functions and
frequency domain wave loads - have to be
derived from model experiments or from
calculated data by a suitable ship motion
computer program. However, the creation
of this hydromechanic input data file
appeared to be very much time consuming.
Besides this, DREDMO and its pre- and
post-processing programs were running on
main frames, and specialists were required
to operate the software.

In 1984, Delft Hydraulics decided to
develop a PC version of DREDMO, to
promote the use of their commercial
package.

In the late 80’s the author had developed
computer code SEAWAY [6,8], a
frequency domain ship motions program
based on the strip theory, for calculating
the wave-induced motions and resulting
mechanic loads of mono-hull ships moving
forward with six degrees of freedom in a
seaway.
The potential coefficients and wave loads
are calculated for infinite and finite water
depths. Added resistance, shearing forces
and bending and torsion moments can be
calculated too. Linear(ised) springs and
free surface anti-rolling tanks, bilge keels
and other anti-rolling devices can be
included. Several wave spectra definitions
can been used.

Computed data have been validated with
results of other computer programs and
experimental data. Based on these
validation studies - and experiences,
obtained during an intensive use of the
program by the author, students and over
30 institutes and industrial users - it is
expected that this program is free of
significant errors.

In 1990, the author used relevant parts of
SEAWAY to create a pre-processing
program for DREDMO. The Laboratory of
Soil Movement had defined the formats of
the hydromechanic input data of
DREDMO. This pre-processing program is
called SEAWAY-D and makes DREDMO
more accessible for less-specialist users.

In 1991, the Laboratory of Soil Movement
had completed their work on DREDMO
with the delivery of PC pre- and post-
processing programs and a user-interface,
which minimises the risk on human input
errors; see [13].

In 1992, an input control program
SEAWAY-H, to check the input data of
the offsets of the under water geometry of
the ship, have been added to the
DREDMO software package.

Since 1993, DREDMO calculations can be
carried out too for ships with local
symmetric twin-hull sections - as for
instance appear at cutter suction dredges -
provided that interaction effects between
individual sections are not accounted for.
Special attention has been paid to
longitudinal jumps in the cross sections,
fully submerged cross sections and
(non)linear viscous roll damping
coefficients. Improved definitions of the
hydrodynamic potential masses at an
infinite frequency and the wave loads have
been added. Finally, many numerical
routines have been improved.

All strip-theory algorithms are described in
[9]. A user manual of SEAWAY-D, with
an example of the input and the output
files, has been given in [11].
This report contains a survey of the
hydromechanic part of the underlying
theory of DREDMO and SEAWAY-D and
a validation of the calculated results.
A separately developed “stripped” version
of DREDMO, called SEAWAY-T, has
been used here to verify all algorithms in
the time domain.
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2 Equations of Motion

The co-ordinate systems are defined in
Figure 1.

Figure 1 Co-ordinate System and
Definitions

Three right-handed co-ordinate systems
have been defined:

1. ),,( bbb zyxG  connected to the ship,
with G  at the ship’s centre of gravity,

bx  in the ship’s centre line in the
forward direction, by  in the ship’s port
side direction and bz  in the upward
direction

2. ),,( 000 zyxS  fixed in space, with S  in
the still water surface, 0x  in the
direction of the wave propagation and

0z  in the upward direction.

3. ),,( zyxO  or ),,( 321 xxxO  moving
with the ship’s speed, with O  above or
below the average position of the
ship’s centre of gravity, x  or 1x
parallel to still water surface, y  or 2x
parallel to still water surface and z  or

3x  in the upward direction. The
angular motions of the body about the
body axes are denoted by: φ , θ  and ψ
or 4x , 5x  and 6x .

3 Frequency Domain Calculations

Based on Newton’s second law of
dynamics, the equations of motion of a
floating object in a seaway are given by:

∑
=

=⋅
6

1
,

j
ijji FxM &&

for i  = 1, 2, … 6

in which:

jiM , 6x6 matrix of solid mass and
inertia of the body

jx&& acceleration of the body in
direction j

iF sum of forces or moments acting in
direction i

When defining a linear system with simple
harmonic wave exciting forces and
moments, defined by:
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The hydromechanic forces and moments
iF , acting on the free floating object in

waves, consist of:

- linear hydrodynamic reaction forces
and moments expressed in terms with
the hydrodynamic mass and damping
coefficients:

),()(),()( ,, txbtxa jjijji ωωωω &&& ⋅−⋅−

- linear hydrostatic restoring forces and
moments expressed in a term with a
spring coefficient:

),(, txc jji ω⋅−
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With this, the linear equations of motion
become:
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The hydromechanic coefficients )(, ωjia ,

)(, ωjib  and jic ,  and the wave load com-

ponents )(ω
a iwF  can be calculated with

existing 2-D or 3-D techniques.
For this, strip theory programs - like for
instance the program SEAWAY [3] - can
be used. According to the strip theory, the
total hydromechanic coefficients and wave
loads of the ship can be found easily by
integrating the cross-sectional values over
the ship length.

The strip theory is a slender body theory,
so one should expect less accurate
predictions for ships with low length to
breadth ratios. However, experiments have
shown that the strip theory appears to be
remarkably effective for predicting the
motions of ships with length to breadth
ratios down to about 3.0 or sometimes
even lower.
The strip theory is based upon the potential
flow theory. This holds that viscous effects
are neglected, which can deliver serious
problems when predicting roll motions at
resonance frequencies. In practice, viscous
roll damping effects can be accounted for

by experimental results or by empirical
formulas.
The strip theory is based upon linearity.
This means that the ship motions are
supposed to be small, relative to the cross-
sectional dimensions of the ship. Only
hydrodynamic effects of the hull below the
still water level are accounted for. So
when parts of the ship go out of or into the
water or when green water is shipped,
inaccuracies can be expected. Also, the
strip theory does not distinguish between
alternative above water hull forms.
Nevertheless these limitations for zero
forward speed, generally the strip theory
appears to be a successful and practical
theory for the calculation of the wave
induced motions of a ship.

For the determination of the two-
dimensional potential coefficients for
sway, heave and roll motions of not fully
submerged ship-like cross sections, the so-
called 2-Parameter Lewis Transformation
can map cross-sections conformally to the
unit circle. Also the N-Parameter Close-Fit
Conformal Mapping Method can be used
for this.

The advantage of conformal mapping is
that the velocity potential of the fluid
around an arbitrary shape of a cross
section in a complex plane can be derived
from the more convenient circular cross
section in another complex plane. In this
manner hydrodynamic problems can be
solved directly with the coefficients of the
mapping function, as reported by Tasai
[15,16].
The advantage of making use of the 2-
Parameter Lewis Conformal Mapping
Method is that the frequency-depending
potential coefficients are a function of the
breadth, the draught and the area of the
cross section, only.

Another method is the Frank Method [2],
also suitable for fully submerged cross
sections. This method determines the
velocity potential of a floating or a
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submerged oscillating cylinder of infinite
length by the integral equation method
utilising the Green’s function, which
represents a pulsating source below the
free surface.
To avoid so-called “irregular frequencies”
in the operational frequency range of not
fully submerged cross sections, each Frank
section will be closed automatically at the
free surface with a few extra points. This
results into a shift of these irregular
frequencies towards a higher frequency
region.

The two-dimensional pitch and yaw
coefficients follow from the heave and
sway moments, respectively.

Finally, a method based on work published
by Kaplan and Jacobs [12] and a
longitudinal strip method has been used
for the determination of the two-
dimensional potential coefficients for the
surge motion.

At the following sections, the
hydromechanic coefficients and the wave
loads for zero forward speed are given as
they can be derived from the two-
dimensional values, defined in a co-
ordinate system with the origin O  in the
waterline.

The symbols, used here, are:

jiM , solid mass and inertia
coefficients of the body

)('
, ωjim sectional hydrodynamic

mass coefficient
)(', ωjin sectional hydrodynamic

damping coefficient
)(' ω

iwF sectional wave exciting
force or moment

)(' ω
iwFK sectional Froude-Krylov

force or moment
)(* ωζ

iw
&& equivalent orbital

acceleration
)(* ωζ

iw
& equivalent orbital velocity

'
wy sectional half breadth of

waterline
bx longitudinal distance of

cross-section to centre of
gravity, positive forwards

OG vertical distance of
waterline to centre of
gravity, positive upwards

BG vertical distance of centre
of buoyancy to centre of
gravity, positive upwards

∇ volume of displacement
xxk radius of gyration in air for

roll
yyk radius of gyration in air for

pitch
zzk radius of gyration in air for

yaw
ρ density of water
g acceleration of gravity
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The solid mass coefficients are given by:
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The remaining solid mass coefficients are
zero.

The potential mass coefficients are given
by:
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The remaining potential mass coefficients
are zero.

The potential mass coefficients are given
by:
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The remaining potential damping
coefficients are zero.

The spring coefficients are given by:
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The remaining spring coefficients are zero.
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The wave loads are given by:

bww

L
bww

bwww

L
bww

w

www

L
bww

www

L
bww

www

L
bww

www

L
bww

xFF

dxFF

xFBGFF

dxFF

OGF

FKnmF

dxFF

FKnmF

dxFF

FKnmF

dxFF

FKnmF

dxFF

i

ii

⋅=

⋅=

⋅−⋅−=

⋅=

⋅+

+⋅+⋅=

⋅=

+⋅+⋅=

⋅=

+⋅+⋅=

⋅=

+⋅+⋅=

⋅=

∫

∫

∫

∫

∫

∫

''

'

'''

'

'

'
4

*'
2,4

*'
2,4

'

'

'
3

*'
3,3

*'
3,3

'

'

'
2

*'
2,2

*'
2,2

'

'

'
1

*'
1,1

*'
1,1

'

'

26

66

315

55

2

224

44

333

33

222

22

11

 :with

 :with

           

 :with

 :with

 :with

 :with

ζζ

ζζ

ζζ

ζζ

&&&

&&&

&&&

&&&

These formulations of the hydrodynamic
exciting and reaction forces and moments
can only be used in the frequency domain,
since jia ,  and jib ,  both depend on the
frequency of motion ω  only and the
exciting wave loads have a linear relation
with the wave amplitude. In irregular
waves the response of the body can be
determined by using the superposition
principle, so using linear response
amplitude operators between motion and
wave amplitudes.

In the following figures, an example has
been given of the hydrodynamic potential
mass and damping and the wave loads for
roll in the frequency domain.

Figure 3-A   Potential Mass of Roll

Figure 3-B   Potential Damping of Roll

Figure Wave Moment of Roll

4 Time Domain Calculations

As a result of the formulation in the
frequency domain, any system influencing
the behaviour of the floating body should
have a linear relation with the
displacement, the velocity and the
acceleration of the body. However, in a lot
of cases there are several complications
which perish this linear assumption, for
instance the non- linear viscous damping,
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forces and moments due to currents, wind,
anchoring, etc.
To include these non-linear effects in the
vessel behaviour, it is necessary to
formulate the equations of motion in the
time domain, which relates instantaneous
values of forces, moments and motions.
For the description of the hydromechanic
reaction forces and moments, due to time
varying ship motions, use has been made
of the classic formulation given by
Cummins [1] with simple frequency
domain solutions of Ogilvie [14].

4.1 Cummins Equations

The floating object is considered to be a
linear system, with translational and
rotational velocities as input and reaction
forces and moments of the surrounding
water as output.
The object is supposed to be at rest at time

0tt = . Then during a short time t∆  an
impulsive displacement x∆ , with a
constant velocity V , is given to the object.
So:

tVx ∆⋅=∆

During this impulsive displacement, the
water particles will start to move. When
assuming that the fluid is rotation-free, a
velocity potential Φ , linear proportional to
V , can be defined:

Ψ⋅=Φ V    for:   tttt ∆+<< 00

in which Ψ  is the normalised velocity
potential.

After this impulsive displacement x∆ , the
water particles are still moving. Because
the system is assumed to be linear, the
motions of the fluid, described by the
velocity potential Φ , are proportional to
the impulsive displacement x∆ .
So:

x∆⋅=Φ χ    for:   ttt ∆+> 0

In here, χ  is a normalised velocity
potential.

The impulsive displacement x∆  during the
period ),( 00 ttt ∆+  does not influence the
motions of the fluid during this period
only, but also further on in time.
This holds that the motions during the
period ),( 00 ttt ∆+  are influenced also by
the motions before this period.

When the object performs an arbitrarily in
time varying motion, this motion can be
considered as a succession of small
impulsive displacements.
Then the resulting total velocity potential

)(tΦ  during the period ),( ttt nn ∆+
becomes:

{
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,
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In here:

n number of time steps

nt tnt ∆⋅+= 0

knt − ( ) tknt ∆⋅−+= 0

njV , j th velocity component during

period ),( ttt nn ∆+

kjV , j th velocity component during

period ),( ttt knkn ∆+−−

jΨ normalised velocity potential
caused by a displacement in
direction j  during period

),( ttt nn ∆+

jχ normalised velocity potential
caused by a displacement in
direction j  during period

),( ttt knkn ∆+−−
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Letting t∆  go to zero, yields:
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where )(tx j&  is the j th  velocity com-
ponent at time t .

The pressure in the fluid follows from the
linearised equation of Bernoulli:

t
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An integration of these pressures over the
wetted surface S  of the floating object
provides the expression for the
hydrodynamic reaction forces and
moments iF .
With in  as the generalised directional
cosine, iF  becomes:
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the hydrodynamic forces and moments
become:
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for i  = 1, 2, … 6

Together with the linear restoring spring
terms jiji xC ,, ⋅  and the linear external

loads )(tX i , Newton’s second law of
dynamics provides the linear equations of
motion in the time domain:
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for i  = 1, 2, … 6

in which:

)(tx j&& translational or rotational
acceleration in direction at time t

)(tx j& translational or rotational velocity
in direction j at time t

)(tx j translational or rotational
displacement in direction at time t

jiM , solid mass or inertia coefficient

jiA , hydrodynamic mass coefficient

jiB , retardation function

jiC , spring coefficient

)(tX i external load in direction i
at time t

When replacing in the damping part τ  by
τ−t  and changing the integration

boundaries, this part can be written in a
more convenient form:
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Referring to the classic work on this
subject by Cummins [1], these six
equations of motion are called here the
"Cummins Equations".

4.2 Hydromechanic Coefficients

The linear restoring spring coefficients
3,3C , 5,3C , 4,4C , 3,5C  and 5,5C  can be

determined easily from the under water
geometry and the centre of gravity of the
floating object. Generally, the other jiC , -
values are zero.

To determine jiA ,  and jiB , , the velocity

potentials jΨ  and jχ  have to be found,
which is very complex.
A much easier method to determine jiA ,

and jiB ,  can be obtained by making use of
the hydrodynamic mass and damping data
found with existing 2-D or 3-D potential
theory based computer programs in the
frequency domain. Relative simple
relations can be found between jiA , , jiB ,

and the calculated data of the
hydrodynamic mass and damping in the
frequency domain.

For this, the floating object is supposed to
carry out a harmonic oscillation jx  with
amplitude 1.0 in the direction j :
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A substitution in the Cummins Equations
provides:
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This results into:
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In the classic frequency domain
description these equations of motion are
presented by:
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In here:

)(, ωjia frequency depending
hydrodynamic mass
coefficient

)(, ωjib frequency depending
hydrodynamic damping
coefficient

jic , restoring spring term
coefficient

When comparing these time domain and
frequency domain equations - both with
linear terms as published by Ogilvie [14] -
it is found:

( )

( )

jiji

jiji

jijiji

Cc

dBb

dBAa

,,

0
,,

0
,,,

cos)()(

sin)(
1

)(

=

⋅⋅=

⋅⋅⋅−=

∫

∫
∞

∞

τωττω

τωττ
ω

ω
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After a Fourier re-transformation, the
damping term provides the retardation
function:

( ) ωωτω
π

τ dbB jiji ⋅⋅⋅= ∫
∞

cos)(
2

)(
0

,,

Then the mass term follows from:

( ) τωττ
ω

ω dBaA jijiji ⋅⋅⋅+= ∫
∞

sin)(
1

)(
0

,,,

This mass expression is valid for any value
of ω , so also for ∞=ω , which provides:

)(,, ∞== ωjiji aA

4.3 Addition of Non-Linearities

So far, these equations of motion are
linear. But non-linear contributions can be
added now to ( )tX i  easily.
For instance, non-linear viscous roll
damping contributions can be added to 4X
by:

( ) φφ && ⋅⋅−=∆ 2
4,44 a

bX

Also it is possible to include non-linear
spring terms, by considering the stability
moment as an external load and shifting its
contribution to the right hand side of the
equation of motion, for instance:

φφρ φ sin)(

0

4

4,4

⋅⋅∇⋅⋅−=∆

=

GNgX

C

in which )(φφGN  is the transverse meta-
centric height at arbitrarily heeling angles.

4.4 Some Numerical Recipes

Many computer programs fail when
calculating )(, ωjib  at too high a

frequency. This holds that - when
determining jiB ,  - the numerical
calculations can be carried out in a limited
frequency range Ω≤≤ ω0  only:

( ) ωωτω
π

τ dbB jiji ⋅⋅⋅= ∫
Ω

cos)(
2

)(
0

,,

So, a truncation error )(, τjiB∆  will be
introduced:

( )∫
∞

Ω

⋅⋅⋅=∆ ωωτω
π

τ dbB jiji cos)(
2

)( ,,

For the uncoupled damping coefficients -
so when ji =  - this truncation error can
be estimated easily.
The relation between the damping
coefficient )(, ωjib  and the amplitude ratio
of the radiated waves and the oscillatory
motion )(, ωα ii  is given by:

)()( 2
,3

2

, ωα
ω

ρ
ω iiii

g
b ⋅

⋅
=

From this an approximation can be found
for the tail of the damping curve:

3
,

, )(
ω

β
ω ii

iib =

The value of ii,β  follows from the
calculated damping value at the highest
frequency used, Ω=ω . This holds that a
constant amplitude ratio )(, ωα ii  is
supposed here for Ω>ω .

Then the truncation error becomes:

( )
( )

( )

( ) ( ) ( )
( ) 




⋅
Ω⋅−

+Ω++

Ω
Ω

−




Ω

Ω
⋅

⋅
=∆

∑
∞

=1

2

2

2
,

,

!22
1

ln

sincos
)(

n

nn

ii
ii

nn

B

τ
τγ

τ
τ

τ

τ
π

τβ
τ
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in which ...577215.0=γ  (Euler constant)

Studies carried out in the past have showed
that in case of a sufficient high value of Ω
the contribution of iiB ,∆  into iiB ,  is often
small. The potential damping calculations
were based on numerical routines as used
in computer program SEAWAY [8,9]. In
this program special attention has been
paid to the potential calculations at very
high frequencies. For normal merchant
ships are 5 radians per second, which can
be reached by the routines in SEAWAY, a
fairly good value for the maximum
frequency Ω .
Thus, the retardation function is
approximated by the numerical solution of
the integral:

( )∫
Ω

⋅⋅⋅=
0

,, cos)(
2

)( τωτω
π

τ dbB jiji

The damping curve has to be calculated at
ωN  constant frequency intervals ω∆ , so:

Ω=∆⋅ ωωN .

When calculating here the retardation
functions it assumed that at each frequency
interval the damping curve is linearly
increasing or decreasing; see Figure 4.

Figure 4   Integration of Damping Curve

Now the contribution of this interval into
jiB ,  can be calculated analytically. This

holds that – caused by a large ω  or a large
τ  - the influence of a strongly fluctuating

( )ωτcos  at this interval can be taken into
account.

Then the numerical integration, at constant
frequency intervals ω∆ , is given by:

( ) ( )[ ]

( )τω
τπ

τωτω
ω

τπ
τ

ωω

ω

NN

N

n
nn

n

ji

b

b

B

sin
2

coscos

2
)(

1
1

2,

⋅⋅
⋅

+









−⋅
∆
∆

⋅

⋅
⋅

=

∑
=

−

in which:

1

1

−

−

−=∆
∆=−=∆

nnn

nnn

bbb
ωωωω

For 0=τ , the value of the retardation
function can be derived simply from the
integral of the damping:

ωω
π

τ dbB jiji ⋅⋅== ∫
Ω

0
,, )(

2
)0(

Because the potential damping is zero for
0=ω , the expression for the damping

term leads for 0=ω , so ( ) 1cos =ωτ , into
the following requirement for the
retardation functions:

0)(
0

, =⋅∫
∞

ττ dB ji

In the equations of motion, the retardation
function multiplied with the velocity
should be integrated over an infinite time:

τττ dtxB jji ⋅−⋅∫
∞

)()(
0

, &

However, after a certain time ji,Γ=τ , the
fluctuating values of the integral have
reached already a very small value.
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A useful limit value for the corresponding
integration time can be found with:

)0(
2

,

1
,

ji

N

n
n

ji B

b

⋅⋅∆⋅

∆
⋅=Γ

∑
=

εωπ

ω

with: 010.0≈ε

So, the Cummins Equations, which are
still linear here, are given by:

( ){

} )()()()(

)(

,
0

,

6

1
,,

,

tXtxCdtxB

txAM

ijjijji

j
jjiji

ji

=⋅+⋅−⋅+

+⋅+

∫

∑
Γ

=

τττ &

&&

for i  = 1, 2, … 6

The numerical integration can be carried
out with the trapezoid rule or with
Simpson’s rule. Because of a relatively
small time step τ∆  is required to solve the
equations of motion numerically, generally
the trapezoid rule is sufficient accurate.

The hydrodynamic mass coefficient
follows from:

)(,, ∞== ωjiji aA

When this mass coefficient is not available
for an infinite frequency, it can be
calculated from a mass coefficient at a
certain frequency Ω=ω  and the
retardation function:

( ) τττ dBaA
ji

jijiji ⋅Ω⋅⋅
Ω

+Ω= ∫
Γ

sin)(
1

)(
,

0
,,,

With:

ττ ∆⋅=Γ Nji,

the numerical solution of this integral can
be found in an similar way as for the
retardation functions:

( )

( ) ( )( )[ ]

( ){ }ττττ

ττ
τ

τττ

ττ

τ

∆⋅⋅Ω⋅=−=⋅

⋅
Ω

+









∆⋅−⋅Ω−⋅⋅Ω⋅
∆

∆
⋅

⋅
Ω

=⋅Ω⋅

∑

∫

=

Γ

NBB

nn
B

dB

Njiji

N

n

n

ji

ji

cos)()0(

1

1sinsin

1

sin)(

,,

1

2

0
,

,

in which:

)1()( ,, −−=∆ nBnBB jijin

Similar to this, the numerical solution of
the frequency depending damping is:

( )

( ) ( )( )[ ]

( )τττ

ττ
τ

τττ

ττ

τ

∆⋅⋅Ω⋅=⋅
Ω

+







 ∆⋅−⋅Ω−⋅⋅Ω⋅

∆
∆

⋅

⋅
Ω

=⋅Ω⋅=Ω

∑

∫

=

Γ

NB

nn
B

dBb

Nji

N

n

n

jiji

ji

sin)(
1

1coscos

1
cos)()(

,

1

2
0

,,

,

5 Equations of Motion

Integrating the velocities of the ship’s
centre of gravity can derive the path of the
ship in the ( )000 ,, zyx  system of axes:

ψψ

θθ

φφ

ψψ
ψψ

&&

&&

&&
&&

&&&
&&&

=

=

=

=
⋅+⋅=
⋅−⋅=

0

0

0

0

0

0

cossin
sincos

zz
yxy
yxx

The Euler equations of motion are written
in the ( )zyx ,,  system of axes:
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( )
( )
( )
( )
( )
( ) extwhyyxxzz

extwhxxzzyy

extwhzzyyxx

extwh

extwh

extwh

NNNIII

MMMIII

KKKIII

ZZZyxzM

YYYzxyM

XXXzyxM

++=⋅⋅−−⋅

++=⋅⋅−−⋅

++=⋅⋅−−⋅

++=⋅+⋅−⋅

++=⋅−⋅+⋅

++=⋅+⋅−⋅

θφψ

ψφθ

ψθφ

φθ

φψ

φψ

&&&&

&&&&

&&&&

&&&&&&

&&&&&&

&&&&&&

with in the right hand sides:

subscript h linear hydromechanic loads
subscript w linear wave loads
subscript ext non-linear hydromechanic

loads and (non)linear
external loads, caused by
wind, currents, anchor
lines, cutter, etc.

With the hydromechanic loads as defined
before, the equations of motion are defined
as given below.

Surge motion:
( )

extw XXCBA

zCzBzA

xCxBxA
zyMxM

+=⋅+⋅+⋅

+⋅+⋅+⋅

+⋅+⋅+⋅
+⋅+⋅−⋅+⋅

θθθ

θψ

5,15,15,1

3,13,13,1

1,11,11,1

&&&
&&&

&&&

&&&&&&

Sway motion:
( )

extw YYCBA

CBA

yCyByA
zxMyM

+=⋅+⋅+⋅

+⋅+⋅+⋅

+⋅+⋅+⋅
+⋅−⋅⋅+⋅

ψψψ

φφφ

φψ

6,26,26,2

4,24,24,2

2,22,22,2

&&&

&&&
&&&

&&&&&&

Heave motion:
( )

extw ZZCBA

zCzBzA

xCxBxA
yxMzM

+=⋅+⋅+⋅

+⋅+⋅+⋅

+⋅+⋅+⋅
+⋅+⋅−⋅+⋅

θθθ

φθ

5,35,35,3

3,33,33,3

1,31,31,3

&&&
&&&

&&&

&&&&&&

Roll motion:
( )

extw

zzyyxx

KKCBA

CBA

yCyByA

III

+=⋅+⋅+⋅

+⋅+⋅+⋅

+⋅+⋅+⋅

+⋅⋅−−⋅

ψψψ

φφφ

ψθφ

6,46,46,4

4,44,44,4

2,42,42,4

&&&

&&&

&&&

&&&&

Pitch motion:
( )

extw

xxzzyy

MMCBA

zCzBzA

xCxBxA

III

+=⋅+⋅+⋅

+⋅+⋅+⋅

+⋅+⋅+⋅

+⋅⋅−−⋅

θθθ

ψφθ

5,55,55,5

3,53,53,5

1,51,51,5

&&&
&&&

&&&

&&&&

Yaw motion:
( )

extw

xxzzzz

NNCBA

CBA

yCyByA

III

+=⋅+⋅+⋅

+⋅+⋅+⋅

+⋅+⋅+⋅

+⋅⋅−−⋅

ψψψ

φφφ

θφψ

6,66,66,6

4,64,64,6

2,62,62,6

&&&

&&&
&&&

&&&&

Some of the coefficients in these six
equations of motion are zero. After
omitting these coefficients and ordering
the terms, the equations for the
accelerations are as follows.

Surge motion:
( )

( )θψ

θ

θ

&&&&

&&

&&&&

⋅−⋅+⋅+

⋅−⋅−

+
=

⋅+⋅+

zyM

BxB

XX

AxAM

extw

5,11,1

5,11,1

Sway motion:
( )

( )φψ

ψφ

ψφ

&&&&

&&&

&&&&&&

⋅+⋅−⋅+

⋅−⋅−⋅−

+
=

⋅+⋅+⋅+

zxM

BByB

YY

AAyAM

extw

6,24,22,2

6,24,22,2
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Heave motion:
( )

( )φθ

θθ

θ

&&&&

&&

&&&&

⋅−⋅+⋅+

⋅−⋅−⋅−⋅−

+
=

⋅+⋅+

yxM

CBzCzB

ZZ

AzAM

extw

5,35,33,33,3

5,33,3

Roll motion:
( )

( ) ψθ

φψφ

ψφ

&&
&&&

&&&&&&

⋅⋅−+

⋅−⋅−⋅−⋅−

+
=

⋅+⋅+⋅+

zzyy

extw

xx

II

CBByB

KK

AyAAI

4,46,44,42,4

6,42,44,4

Pitch motion:
( )

( ) ψφ

θθ

θ

&&

&&&

&&&&&&

⋅⋅−+

⋅−⋅−⋅−⋅−⋅−

+
=

⋅+⋅+⋅+

xxzz

extw

yy

II

CBzCzBxB

MM

zAxAAI

5,55,53,53,51,5

3,51,55,5

Yaw motion:
( )

( ) θφ

ψφ

φψ

&&
&&&

&&&&&&

⋅⋅−+

⋅−⋅−⋅−

+
=

⋅+⋅+⋅+

yyxx

extw

zz

II

BByB

NN

AyAAI

6,64,62,6

4,62,66,6

With known coefficients and right hand
sides of these equations, the six
accelerations can be determined by a
numerical method as - for instance - the
well-known Runge-Kutta method.
Because of sometimes an extreme high
stiffness of the cutter dredge system, Delft
Hydraulics has adapted the numerical
solution method of these equations in
DREDMO for this; see [13].

6 Viscous Damping

Sway and Yaw
The non-linear viscous sway and yaw
damping term in the equations of motion
for sway and yaw can be approximated by:

yyb
v

&& ⋅⋅)2(
2,2    and   ψψ && ⋅⋅)2(

6,6 v
b

with:

50.1
6
1
2
1

3)2(
6,6

)2(
2,2

≈

⋅⋅⋅⋅=

⋅⋅⋅⋅=

D

D

D

C

CdLb

CdLb

v

v

ρ

ρ

Roll
The total non-linear roll damping term in
the equation of motion for roll can be
expressed as:

( ) φφφ &&& ⋅⋅+⋅+ )2(
4,4

)1(
4,44,4 aa

bbb

with:

4,4b linear potential roll damping
coefficient

)1(
4,4 a

b linear(ised) additional roll damping
coefficient

)2(
4,4 a

b non-linear additional roll damping
coefficient

The linear potential roll-damping coeffi-
cient 4,4b  can be determined as described
before.
For time domain calculations a linear as
well as a non-linear roll-damping
coefficient can be used. However, for
frequency domain calculations an
equivalent linear roll-damping coefficient
has to be estimated. This linearised roll-
damping coefficient can be found by
requiring that an equivalent linear damping
dissipate an equal amount of energy as the
non-linear damping, so:



16

dtbdtb
TT

aa
⋅⋅⋅⋅=⋅⋅⋅ ∫∫ φφφφφ

φφ

&&&&&
0

)2(
4,4

0

)1(
4,4

Then the equivalent linear additional roll-
damping coefficient )1(

4,4 a
b  becomes:

)2(
4,4

)1(
4,4 3

8
aa

bb a ⋅⋅⋅
⋅

= ωφ
π

The additional roll damping coefficients
)1(

4,4 a
b  and )2(

4,4 a
b  are mainly caused by

viscous effects. Until now it is not possible
to determine these additional coefficients
in a pure theoretical way. They have to be
estimated by free rolling model
experiments or by a semi-empirical
method, based on theory and a large
number of model experiments with
systematic varied ship forms. The
linear(ised) and the non-linear equations of
pure roll motions, used to analyse free
rolling model experiments, are presented
here. Also, for zero forward ship speed,
the algorithms of the empirical method of
Ikeda, Himeno and Tanaka [3] are given.

6.1 Experimental Roll Damping

In case of pure free rolling in still water,
the linear equation of the roll motion about
the centre of gravity G is given by:

( ) ( ) 04,44,44,44,4 =⋅+⋅++⋅+ φφφ cbbaI
axx

&&&

in which:

4,4a potential mass coefficient

4,4b potential damping coefficient

a
b 4,4 linear(ised) additional damping

coefficient

4,4c restoring term coefficient

This equation can be rewritten as:

02 2
0 =⋅+⋅⋅+ φωφνφ &&&

in which 
4,4

4,44,42
aI

bb

xx

a

+

+
=ν  is the quotient

between damping and moment of inertia

and 
4,4

4,42
0 aI

c

xx +
=ω  is the not-damped

natural roll frequency squared.

When defining a non-dimensional roll
damping coefficient by:

0ω
ν

κ =

the equation of motion for roll can be
rewritten as:

02 2
00 =⋅+⋅⋅⋅+ φωφωκφ &&&

Then, the logarithmic decrement of roll is:












+
=

⋅⋅=⋅

)(
)(

ln

0

φ

φφ

φ
φ

ωκν

Tt
t

TT

Because of the relation 22
0

2 νωωφ −=

and the assumption that 2
0

2 ων << , it can
be written 0ωωφ ≈ .
This leads to:

πωω φφφ ⋅=⋅≈⋅ 20 TT

So, the non-dimensional total roll damping
is given by:

( )
( )

( )
4,4

0
4,44,4 2

ln
2

1

c
bb

Tt
t

a ⋅
⋅+=












+
⋅

⋅
=

ω

ω
ω

π
κ

φ
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The non-potential part of the total roll-
damping coefficient follows from the
average value of κ  by:

4,4
0

4,4
4,4

2
b

c
b

a
−

⋅
⋅=

ω
κ

When data on free-rolling experiments
with a model in still water are available,
these κ -values can easily been found.

Often the results of these free rolling tests
are presented by:

a

a

φ
φ∆

 as function of aφ ,

with aφ  as the absolute value of the
average of two successive positive or
negative maximum roll angles:

2
)1()( ++

=
ii aa

a

φφ
φ

and aφ∆  as the absolute value of the
difference of two successive positive or
negative maximum roll angles:

)1()( +−=∆ ii aaa φφφ

Then the total non-dimensional natural
frequency becomes:





















∆
−

∆
+

⋅
⋅

=

a

a

a

a

φ
φ

φ
φ

π
κ

2

2

ln
2

1

These experiments deliver no information
on the relation with the frequency of
oscillation. So, it has to be decided to keep
the additional coefficient 

a
b 4,4  or the total

coefficient 
a

bb 4,44,4 +  constant.

The successively found values for κ ,
plotted on base of the average roll
amplitude, will often have a non-linear
behaviour as illustrated in Figure 5.
For behaviour like this, it will be found:

aφκκκ ⋅+= 21

Figure 5   Free Rolling Data

This holds that during frequency domain
calculations, the damping term is
depending on the solution for the roll
amplitude.
For rectangular barges (LxBxd ) with the
centre of gravity in the water line, it is
found by Journée [7]:

50.0

0013.0

2

2

1

≈







⋅≈

κ

κ
d
B

Then the total roll-damping term becomes:

( ) φ
ω

φκκφ
ω

κ && ⋅






 ⋅

⋅⋅+=⋅






 ⋅

⋅
0

4,4
21

0

4,4 22 cc
a

The linear additional roll-damping coeffi-
cient becomes:

4,4
0

4,4
1

)1(
4,4

2
b

c
b

a
−

⋅
⋅=

ω
κ

But for the non-linear additional roll-
damping coefficient, a quasi-quadratic
damping coefficient is found:
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φ

φ
ω

κ
&
ac

b
a

⋅
⋅

⋅=
0

4,4
2

)2(
4,4

2

Because this roll-damping "coefficient"
includes ),( tωφ&  in the denominator, it

varies strongly with time.

An equivalent non-linear damping term
can be found by requiring that the
equivalent quadratic damping term will
dissipate an equal amount of energy as the
quasi-quadratic damping term, so:

∫

∫

⋅⋅⋅⋅
⋅

⋅=

=⋅⋅⋅⋅

φ

φ

φφφ
ω

κ

φφφ

T

a

T

dt
c

dtb
a

00

4,4
2

0

)2(
4,4

2 &&

&&&

Then the equivalent quadratic additional
roll-damping coefficient )2(

4,4 a
b  becomes:

2
0

4,4
2

)2(
44

2
8

3
ω

π
κ

c
b

a

⋅
⋅

⋅
⋅=

With this, the roll-damping term based on
experimentally determined κ -values, as
given in Figure 5, becomes:

( )
φφ

ω
π

κφ
ω

κ

φφφ

&&&

&&&

⋅⋅
⋅

⋅
⋅

⋅+⋅
⋅

⋅=

=⋅⋅+⋅+

2
0

4,4
2

0

4,4
1

)2(
44

)1(
444,4

2
8

32 cc

bbb
aa

So far, pure roll motions with one degree
of freedom are considered in the equations
of motion. Coupling effects between the
roll motion and the other motions are not
taken into account. This can be done in an
iterative way.

Experimental or empirical values of 1κ

and 2κ  provide starting values for )1(
4,4 a

b

and )2(
4,4 a

b . With these coefficients, a free-
rolling experiment with all degrees of

freedom can be simulated in the time
domain. An analyse of this simulated roll
motion, as being a linear pure roll motion
with one degree of freedom, delivers new
values for )1(

4,4 a
b  and )2(

4,4 a
b . This

procedure has to be repeated until a
suitable convergence has been reached. An
inclusion of the natural frequency 0ω  in
this iterative procedure provides also a
reliable value for the estimated solid mass
moment of inertia coefficient xxI .
However, this procedure is not included in
DREDMO yet.

6.2 Empirical Roll Damping

Because of the additional part of the roll
damping is significantly influenced by the
viscosity of the fluid, it is not possible to
calculate the total roll damping in a pure
theoretical way. Besides this, experiments
showed also a non-linear (about quadratic)
behaviour of the additional parts of the roll
damping.
As mentioned before, the total non-linear
roll damping term in the left-hand side of
the equation of motion for roll can be
expressed as:

( ) φφφ &&& ⋅⋅+⋅+ )2(
44

)1(
444,4 aa

bbb

For the estimation of the additional parts
of the roll damping, use has been made of
work published by Ikeda, Himeno and
Tanaka [3]. Their empirical method is
called here the “Ikeda Method”.
At zero forward speed, this Ikeda method
estimates the following components of the
additional roll-damping coefficient of a
ship:

)2(
4,4

)2(
4,4

)2(
4,4

)2(
4,4

)1(
4,4 0

kefa

a

bbbb

b

++=

=

with:



19

)2(
4,4 f

b non-linear friction damping
)2(

4,4 e
b non-linear eddy damping

)2(
4,4 k

b non-linear bilge keel damping

Ikeda, Himeno and Tanaka claim fairly
good agreements between their prediction
method and experimental results.
They conclude that the method can be used
safely for ordinary ship forms. But for
unusual ship forms, very full ship forms
and ships with a large breadth to draught
ratio the method should not be always
sufficiently accurate.
Even a few cross sections with a large
breadth to draught ratio can result in an
extremely large eddy-making component
of the roll damping. So, always judge the
components of this damping.

In the description of the Ikeda method, the
nomenclature of Ikeda is maintained here
as far as possible:

ρ density of water
ν kinematic viscosity of water
g acceleration of gravity
ω circular roll frequency

aφ roll amplitude

nR Reynolds number
L length of the ship
B breadth of the ship
D average draught of the ship

BC block coefficient

fS hull surface area

OG distance of centre of gravity above
still water level

sB sectional breadth on the water line

sD sectional draught

sσ sectional area coefficient

0H sectional half breadth to draught
ratio

1a sectional Lewis coefficient

3a sectional Lewis coefficient

sM sectional Lewis scale factor

fr average distance between roll axis
and hull surface

kh height of the bilge keels

kL length of the bilge keels

kr distance between roll axis and bilge
keel

kf correction for increase of flow
velocity at the bilge

pC pressure coefficient

ml lever of the moment

br local radius of the bilge circle

For numerical reasons two restrictions
have to be made during the sectional
calculations:
- if 999.0>sσ  then 999.0=sσ

- if ssDOG σ⋅−<  then ssDOG σ⋅−=

6.2.1 Frictional Damping, )2(
4,4 f

b

Kato deduced semi-empirical formulas for
the frictional roll-damping from experi-
mental results of circular cylinders, wholly
immersed in the fluid.
An effective Reynolds number for the roll
motion was defined by:

( )
ν

ωφ ⋅⋅⋅
=

2512.0 af
n

r
R

In here, for ship forms the average
distance between the roll axis and the hull
surface fr  can be approximated by:

( )
π

OG
L

S
C

r

f
B

f

⋅+⋅⋅+
=

0.2145.0887.0

with a wetted hull surface area fS ,
approximated by:

( )BCDLS Bf ⋅+⋅⋅= 70.1
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When eliminating the temperature of
water, the kinematic viscosity can be
expressed in the density of water with the
following relation in the kg-m-s system:
- fresh water:

( )
( ) sm   100007424.0

10003924.0442.110
22

6

−⋅+

−⋅+=⋅

ρ

ρν

- sea water:

( )
( ) sm   100002602.0

10001039.0063.110
22

6

−⋅+

−⋅+=⋅

ρ

ρν

Kato expressed the skin friction coefficient
as:

114.0500.0 014.0328.1 −− ⋅+⋅= nnf RRC

The first part in this expression represents
the laminar flow case. The second part has
been ignored by Ikeda, but has been
included here.

Using this, the non-linear roll-damping
coefficient due to skin friction at zero
forward speed is expressed as:

fff CSrb
f

⋅⋅⋅⋅= 3
4,4 2

1
ρ

Ikeda confirmed the use of this formula for
the three-dimensional turbulent boundary
layer over the hull of an oscillating
ellipsoid in roll motion.

6.2.2 Eddy-Making Damping, )2(
4,4 e

b

At zero forward speed the eddy making
roll damping for the naked hull is mainly
caused by vortices, generated by a two-
dimensional separation. From a number of
experiments with two-dimensional
cylinders it was found that for a naked hull
this component of the roll moment is
proportional to the roll velocity squared
and the roll amplitude. This means that the

non-linear roll-damping coefficient does
not depend on the period parameter but on
the hull form only.
When using a simple form for the pressure
distribution on the hull surface it appears
that the pressure coefficient pC  is a
function of the ratio γ  of the maximum
relative velocity maxU  and the mean
velocity meanU  on the hull surface:

mean

max

U
U

=γ

The relation between pC  and γ  was
obtained from experimental roll damping
data of two-dimensional models.
These experimental results are fitted by:

50.10.2435.0 187.0 +⋅−⋅= ⋅−− γγ eeC p

The value of γ  around a cross-section is
approximated by the potential flow theory
for a rotating Lewis-form cylinder in an
infinite fluid.
An estimation of the sectional maximum
distance between the roll axis and the hull
surface, maxr , has to be made.
Values of )(max ψr  have to be calculated
for:

0.01 == ψψ

and:
( )









⋅
+⋅

⋅==
3

31
2 4

1
arccos5.0

a
aa

ψψ

The values of ( )ψmaxr  follow from:

( ) ( ) ( ){ }
( ) ( ) ( ){ }2

31

2
31

max

3coscos1

3sinsin1

)(

ψψ

ψψ

ψ

⋅⋅+⋅−

+⋅⋅−⋅+
⋅

=

aa

aa
M

r

s

With these two results, maxr  and ψ  follow
from the conditions:
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- if )()( 2max1max ψψ rr >  then:
)( 1maxmax ψrr =   and 1ψψ =

- if )()( 2max1max ψψ rr <  then:
)( 2maxmax ψrr =   and 2ψψ =

The relative velocity ratio γ  on a cross-
section is obtained by:







 +⋅

⋅
+⋅

⋅









+⋅⋅⋅

⋅
=

22
max

0

3

2

2

ba
H
M

r

D
OG

HD

f

s

s
ss σ

π
γ

with:

( ) ( )
( )

( )
( ) ( )

( ) ( ){
} ( )

( )
( ) ( )

( ) ( ){
} ( )

( )25 11065.1
3

2
1

31
2

1
2

31

31

3

2
1

31
2

1
2

31

31

3

3

31

2
3

2
1

41

sin     

336

3sin1

5sin2

cos     

336

3cos1

5cos2

4cos6
2cos312

91

sef

a

aaaaa

aa

ab

a

aaaaa

aa

aa

a
aa

aaH

σ

ψ

ψ

ψ

ψ

ψ

ψ

ψ
ψ

−⋅⋅−⋅+=

⋅+

⋅⋅++⋅⋅++

⋅⋅−⋅+

⋅⋅⋅−=

⋅+

⋅⋅−+⋅⋅−+

⋅⋅−⋅+

⋅⋅⋅−=

⋅⋅⋅−
⋅⋅⋅−⋅⋅+

⋅++=

With this a non-linear sectional eddy
making damping coefficient for zero
forward speed follows from:
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The term between square brackets








 ⋅−

s

b

D
rf1  is included in the program

listing in the paper of Ikeda et. al. [3], but
it does not appear in the formulas given in
the paper. After contacting Ikeda, this term
has been omitted in SEAWAY and
SEAWAY-D.

The approximation of the local radius of
the bilge circle bR  is:

• for sb DR <  and 2/sb BR < :

( )
4

1
2 0

−
−⋅

⋅⋅=
π

σ s
sb

H
DR

• for 10 >H  and sb DR > :

sb DR =

• for 10 <H  and sb DHR ⋅< 0 :
2/sb BR =

For three-dimensional ship forms, the zero
forward speed eddy-making damping
coefficient is found by integration over the
ship length:
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∫ ⋅=
L

bE dxBb
e

')2(
4,4

6.2.3 Bilge Keel Damping, )2(
4,4 k

b

The bilge keel component of the non-
linear roll-damping coefficient is divided
into two components:
- a component NB  due to the normal

force of the bilge keels
- a component SB  due to the pressure an

the hull surface, created by the bilge
keels.

The normal force component NB  of the
bilge keel damping can be deduced from
experimental results of oscillating flat
plates. The drag coefficient DC  depends
on the period parameter or the Keulegan-
Carpenter number. Ikeda measured this
non-linear drag also by carrying out free
rolling experiments with an ellipsoid with
and without bilge keels.
This results in a non-linear sectional
damping coefficient:

DkkkN CfhrB ⋅⋅⋅= 23'

with:

( )sef
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h

C

k

kak

k
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σ

φπ
−⋅−⋅+=

+
⋅⋅⋅

⋅=

0.11603.00.1

40.25.22

The local distance between the roll axis
and the bilge keel, kr , will be determined
further on.

Assuming a pressure distribution on the
hull caused by the bilge keels, a non-linear
sectional roll-damping coefficient can be
defined:

∫ ⋅⋅⋅⋅⋅=
kh

mpkkS dhlCfrB
0

22'

2
1

Ikeda carried out experiments to measure
the pressure on the hull surface created by
bilge keels. He found that the coefficient

+
pC  of the pressure on the front-face of

the bilge keel does not depending on the
period parameter, while the coefficient

−
pC  of the pressure on the back-face of

the bilge keel and the length of the
negative pressure region depend on the
period parameter.

Ikeda defines an equivalent length of a
constant negative pressure region 0S  over
the height of the bilge keels, which is fitted
to the following empirical formula:

kakk hrfS ⋅+⋅⋅⋅⋅= 95.130.00 φπ

The pressure coefficient on the front-face
of the bilge keel is given by:

20.1=+
pC

The pressure coefficient on the back-face
of the bilge keel is given by:

20.15.22 −
⋅⋅⋅

⋅−=−

akk

k
p fr

h
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φπ

The sectional pressure moment is given
by:
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while:
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For bRS ⋅⋅> π25.00 :
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The approximation of the local radius of
the bilge circle, bR , is given before.

The approximation of the local distance
between the roll axis and the bilge keel,

kr , is given as:
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The total bilge keel damping coefficient
can be obtained now by integrating the
sum of the sectional roll damping
coefficients '

NB  and '
SB  over the length

of the bilge keels:
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7 Comparative Simulations

As far as ship motions are concerned,
SEAWAY-T is an equivalent of
DREDMO. To check the calculation
routines for the time domain, as used in the
pre-processing program SEAWAY-D and
in the time domain program SEAWAY-T,
comparisons have been made with the
results of the frequency domain program
SEAWAY [8] for a number of ship types.
An example of the results of these
validations is given here for the S-175
containership design in deep water, as has
been used in the Manual of SEAWAY too,
with principal dimensions as given below.

Length between perp., ppL 175.00 m
Breadth, B   25.40 m
Amidships draught, md     9.50 m
Trim by stern, t     0.00 m
Block coefficient, BC     0.57

Metacentric height, GM     0.98 m
Longitudinal CoB , ppCoB LL /   -1.42 %

Radius of inertia, ppxx Lk /     0.33

Radius of inertia, ppyy Lk /     0.24
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Radius of inertia, ppzz Lk /     0.24

Height of bilge keels, kh     0.45 m
Length of bilge keels, kL   43.75 m

The body plan of this container ship design
is given in the Figure 6.

Figure 6   Body Plan S-175 Ship

This S-175 containership design had been
subject of several computer and
experimental studies, co-ordinated by the
Shipbuilding Research Association of
Japan and the Seakeeping Committee of
the International Towing Tank Conference
[4,5]. Results of these studies have been
used continuously for validating program
SEAWAY after each modification during
its development.
For this ship, the motions have been
calculated in the frequency domain and in
the time domain at zero forward ship
speed.
Additional data, used during the time
domain simulations, are:
- maximum frequency of damping

curves: 00.5=Ω  rad/s
- frequency interval: 05.0=∆ω  rad/s
- maximum time in retardation

functions: 00.50, =Γ ji  s
- time interval: 25.0=∆t  s
The potential coefficients and the
frequency characteristics of the wave loads
at zero forward speed, calculated by
SEAWAY-D, have been input in
SEAWAY-T and the calculations have
been carried out for a regular wave

amplitude of 1.0 meter. Extra attention has
been paid here to the roll motions. In both
calculations, the viscous roll damping has
been estimated with the Ikeda method. In
the frequency domain, the results are
linearised for this wave amplitude of 1.0
meter. Because of the relatively small roll-
damping at zero forward speed, in the
natural frequency region the initial
conditions of the wave loads will occur
unstable roll motions in the time domain.
Then, a long simulation time is required to
obtain stable motions.

The agreements between the amplitudes
and the phase lags of the six basic motions,
calculated both in the frequency domain
and in the time domain, are remarkably
good. Some comparative results of the six
motion amplitudes of the S-175
containership design are given in Table I.

Table I    Comparison of Computations
   for S-175 Ship
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Comparisons for a rectangular barge (100
x 20 x 4 meter), with hoppers (25 x 14
meter) fore and aft, are given in Table II
for the natural roll frequency region. The
experimental roll damping data were input
here.

Table II   Comparison of Computations
    for a Barge with Hoppers

Based on these and a lot of other
comparisons between the time domain and
the frequency domain approaches for
linear systems, it may be concluded that
SEAWAY-D + SEAWAY-T has an equal
accuracy as the frequency domain
predictions of these linear motions by the
parent program SEAWAY.
This conclusion holds that the pre-
processing program SEAWAY-D provides
reliable results.

8 Conclusions and Remarks

This new release of SEAWAY-D includes
the use of local twin-hull cross-sections,
the N-Parameter Close-Fit Conformal
Mapping Method and (non)linear viscous
roll damping coefficients. Special attention
has been paid to longitudinal jumps in the
cross sections and fully submerged cross-
sections. Also, improved definitions of the
hydrodynamic potential masses at an
infinite frequency and the wave loads have
been added.

Based on a lot of comparisons, made
between the time domain and the
frequency domain approaches for

linear(ised) systems, it may be concluded
that the computer codes SEAWAY-D and
SEAWAY-T have an equal accuracy as
the frequency domain predictions of these
linear(ised) motions by the parent code
SEAWAY.

This conclusion holds that the pre-
processing program SEAWAY-D delivers
reliable results. It is advised however to
carry out a similar validation study with
the computer codes SEAWAY-D and
DREDMO too.
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