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Abstract

Software package DREDMO of the Delft Hydraulics predicts the behaviour of seagoing
cutter dredges in near-shore conditions, which behaviour can be important with respect to the
congtruction of the dredge and the assessment of downtime. The motion behaviour of the
seagoing dredge has been described by non-linear Cummins Equations, which have to be
solved in the time domain.

The required input data on hydromechanic coefficients, retardation functions and frequency
domain wave load series can be derived with a newly developed pre-processing program
SEWAY -D. This program, based on the frequency domain ship motions program SEAWAY,,
creates the hydromechanic input data file for DREDMO with a minimum risk on human input
errors and makes DREDMO much more accessible for less-specialist users.

This report describes the underlying hydromechanic theory of the new SEAWAY-D and
DREDMO releases. Also, comparisons with frequency domain results have been given.

the Ship Hydromechanics Laboratory
(both are laboratories of the Delft
University of Technology) developed the
computer code DREDMO [13] in the early

1 I ntroduction

The prediction of the behaviour of cutter
dredges in near-shore conditions can be

important with respect to the construction
of the dredge and the assessment of
downtime. To be able to make downtime
predictions, the Delft Hydraulics together
with the Laboratory of Soil Movement and

80's. The behaviour of the seagoing
dredge has been described by non-linear
so-called Cummins Equations, which have
to be solved in the time domain. These
equations require hydromechanic



coefficients, retardation functions and
wave load series as input, together with
geometric and operational data of the ship
and the operational working method.

The required input data — hydromechanic
coefficients, retardation functions and
frequency domain wave loads - have to be
derived from model experiments or from
caculated data by a suitable ship motion
computer program. However, the creation
of this hydromechanic input data file
appeared to be very much time consuming.
Besides this, DREDMO and its pre- and
post-processing programs were running on
main frames, and specialists were required
to operate the software.

In 1984, Delft Hydraulics decided to
develop a PC version of DREDMO, to
promote the use of their commercia
package.

In the late 80's the author had developed
computer code SEAWAY [68], a
frequency domain ship motions program
based on the strip theory, for calculating
the wave-induced motions and resulting
mechanic loads of mono-hull ships moving
forward with six degrees of freedom in a
seaway.

The potentia coefficients and wave loads
are calculated for infinite and finite water
depths. Added resistance, shearing forces
and bending and torsion moments can be
calculated too. Linear(ised) springs and
free surface anti-rolling tanks, bilge keels
and other anti-rolling devices can be
included. Several wave spectra definitions
can been used.

Computed data have been validated with
results of other computer programs and
experimental data. Based on these
validation studies - and experiences,
obtained during an intensive use of the
program by the author, students and over
30 institutes and industrial users - it is
expected that this program is free of
significant errors.

In 1990, the author used relevant parts of
SEAWAY to creste a pre-processing
program for DREDMO. The Laboratory of
Soil Movement had defined the formats of
the hydromechanic input data of
DREDMO. This pre-processing program is
caled SEAWAY-D and makes DREDMO
more accessible for less-specialist users.

In 1991, the Laboratory of Soil Movement
had completed their work on DREDMO
with the delivery of PC pre- and post-
processing programs and a user-interface,
which minimises the risk on human input
errors; see [13].

In 1992, an input control program
SEAWAY-H, to check the input data of
the offsets of the under water geometry of
the ship, have been added to the
DREDMO software package.

Since 1993, DREDMO calculations can be
carried out too for ships with loca
symmetric twin-hull sections - as for
instance appear at cutter suction dredges -
provided that interaction effects between
individual sections are not accounted for.
Special attention has been pad to
longitudinal jumps in the cross sections,
fully submerged cross sections and
(non)linear  viscous  roll damping
coefficients. Improved definitions of the
hydrodynamic potential masses at an
infinite frequency and the wave loads have
been added. Finally, many numerical
routines have been improved.

All strip-theory algorithms are described in
[9]. A user manual of SEAWAY-D, with
an example of the input and the output
files, has been given in [11].

This report contains a survey of the
hydromechanic part of the underlying
theory of DREDMO and SEAWAY-D and
avalidation of the calculated results.

A separately developed “stripped” version
of DREDMO, caled SEAWAY-T, has
been used here to verify al agorithms in
the time domain.



2 Equations of Motion

The co-ordinate systems are defined in
Figure 1.

Figure 1

Co-ordinate System and
Definitions

Three right-handed co-ordinate systems
have been defined:

1. G(X,,Y,,2) connected to the ship,
with G at the ship’s centre of gravity,
X, in the ship's centre line in the
forward direction, y, in the ship’s port
side direction and z, in the upward
direction

2. S(X%y,Y,,2,) fixed in space, with S in
the still water surface, x, in the

direction of the wave propagation and
z, in the upward direction.

3. O(x,y,z) or O(x,X,,X;) moving

with the ship’s speed, with O above or
below the average position of the
ship's centre of gravity, X or X

parallel to still water surface, y or x,

parald to till water surface and z or
X, in the upward direction. The

angular motions of the body about the
body axes are denoted by: f , g and y

or X,, X and Xg.

3 Frequency Domain Calculations
Based on Newton's second law of

dynamics, the equations of motion of a
floating object in a seaway are given by:

fori =1,2,...6
in which:

M.. 6x6 matrix of solid mass and
inertia of the body

X; acceleration of the body in
direction |

F. sum of forces or moments acting in
direction i

When defining a linear system with simple
harmonic wave exciting forces and
moments, defined by:

0= F ) ot e, )

The resulting simple harmonic displace-
ments, velocities and accelerations are:

X;(W,t) = X, (W): Cos(vvt)
X, (W,t) = - w5, () >ain (wt)

%, (W, t) = -w? xx, (w) cos(wt)

The hydromechanic forces and moments
F., acting on the free floating object in
waves, consist of:

- linear hydrodynamic reaction forces
and moments expressed in terms with
the hydrodynamic mass and damping
coefficients:

- a w) xxj (w,t) - bi,j (w) xxj (w,t)

- linear hydrostatic restoring forces and
moments expressed in a term with a
spring coefficient:

- G X (w,t)



With this, the linear equations of motion
become:

6
o

afm, = }=

j=1

o

& { a0 w0- b, W wo)
- ¢, X Wt} F,, () xcosut +e,, ()
fori=1,2..6

So:

s (M, +a, W) (w,b i
%{ by, (W) %X, (W,t) +C, xx(wt)g

=F, W) xcos(vvt +e, (w))
fori=1,2,...6

The hydromechanic coefficients a, ; (w),
b ;W) and c;; and the wave load com-
ponents F, (w) can be calculated with
existing 2-D or 3-D techniques.

For this, strip theory programs - like for
instance the program SEAWAY [3] - can
be used. According to the strip theory, the
total hydromechanic coefficients and wave
loads of the ship can be found easily by
integrating the cross-sectiona values over
the ship length.

The strip theory is a dender body theory,
so one should expect less accurate
predictions for ships with low length to
breadth ratios. However, experiments have
shown that the strip theory appears to be
remarkably effective for predicting the
motions of ships with length to breadth
ratios down to about 3.0 or sometimes
even lower.

The strip theory is based upon the potential
flow theory. This holds that viscous effects
are neglected, which can deliver serious
problems when predicting roll motions at
resonance frequencies. In practice, viscous
roll damping effects can be accounted for

by experimental results or by empirical
formulas.

The strip theory is based upon linearity.
This means that the ship motions are
supposed to be small, relative to the cross-
sectional dimensions of the ship. Only
hydrodynamic effects of the hull below the
still water level are accounted for. So
when parts of the ship go out of or into the
water or when green water is shipped,
inaccuracies can be expected. Also, the
strip theory does not distinguish between
aternative above water hull forms.
Nevertheless these limitations for zero
forward speed, generally the strip theory
appears to be a successful and practical
theory for the calculation of the wave
induced motions of a ship.

For the determination of the two-
dimensional potential coefficients for
sway, heave and roll motions of not fully
submerged ship-like cross sections, the so-
caled 2-Parameter Lewis Transformation
can map cross-sections conformally to the
unit circle. Also the N-Parameter Close-Fit
Conformal Mapping Method can be used
for this.

The advantage of conforma mapping is
that the velocity potential of the fluid
around an arbitrary shape of a cross
section in a complex plane can be derived
from the more convenient circular cross
section in another complex plane. In this
manner hydrodynamic problems can be
solved directly with the coefficients of the
mapping function, as reported by Tasa
[15,16].

The advantage of making use of the 2-
Parameter Lewis Conforma Mapping
Method is that the frequency-depending
potential coefficients are a function of the
breadth, the draught and the area of the
cross section, only.

Another method is the Frank Method [2],
aso suitable for fully submerged cross
sections. This method determines the
velocity potential of a floating or a



submerged oscillating cylinder of infinite
length by the integral equation method
utilising the Green's function, which
represents a pulsating source below the
free surface.

To avoid so-caled “irregular frequencies’
in the operationa frequency range of not
fully submerged cross sections, each Frank
section will be closed automatically at the
free surface with a few extra points. This
results into a shift of these irregular
frequencies towards a higher frequency
region.

The two-dimensional pitch and yaw
coefficients follow from the heave and
sway moments, respectively.

Finally, a method based on work published
by Kaplan and Jacobs [12] and a
longitudinal strip method has been used
for the determination of the two-
dimensional potential coefficients for the
surge motion.

At the following sections, the
hydromechanic coefficients and the wave
loads for zero forward speed are given as
they can be derived from the two-
dimensional values, defined in a co-
ordinate system with the origin O in the
waterline.

The symbols, used here, are:

M, ; solid mass and inertia
coefficients of the body

m, (W)
n,; W)
F,, (W)
FK,, (W)
z, (W)

;. w)

Yar

sectional hydrodynamic
mass coefficient
sectional hydrodynamic
damping coefficient
sectional wave exciting
force or moment
sectional Froude-Krylov
force or moment
equivalent orbital
acceleration

equivalent orbital velocity

sectional half breadth of
waterline

longitudinal distance of
cross-section to centre of
gravity, positive forwards
vertical distance of

waterline to centre of
gravity, positive upwards
vertical distance of centre
of buoyancy to centre of
gravity, positive upwards
volume of displacement
radius of gyration in air for
roll

radius of gyration in air for
pitch

radius of gyration in air for
yaw

density of water
acceleration of gravity



The solid mass coefficients are given by:

M, =M=r:N
M,, =M =1 =
Moy =M =1 N

M,, =1, =k, x =N

Mgs =1, =k, xr =N

Mgg =1, =k,” x =N
The remaining solid mass coefficients are
zero.

The potential mass coefficients are given
by:

= E‘j’r‘h' xalx,
a,; =-BGxa,
= Cfnz,z' xdx,
)
= E‘)“n“' xdx, + OG xa, ,
= E‘J“z,z' xx, xdXx,
= E‘)vn3 5 xdx,
8gs =- Lcms X%, XX,
a,, = E‘jn4,4' xdx, + OG XE‘j'T‘IA’ZI xcix,
+0Ga,,
8y = Mz XX, X, +OG xa,¢
)
ag, = E‘jnsyg' xx,” xdx, - BG @, ;
= g‘fnzz' xx, 2 xadx,
i =&

The remaining potential mass coefficients
are zero.

The potential mass coefficients are given

by, = E‘m X,

bs =-BG>b,

b,, = E‘yz,z' xalx,

b,, = E‘)ﬁ“ xdx, +0G b, ,
b,s = E‘pz,z' XX, XX,

b,s = 513,3‘ xclx,

IR
remaining  potential  damping

coefficients are zero.

The spring coefficients are given by:

Cys = 250 XG0y, *dX,
L
Cas = 25T XG XY, X, XX,
L

Cos =1 xg N>GM
Css = I X9 N>GM,

Cj,i :Ci,j

The remaining spring coefficients are zero.



The wave loads are given by:
Fu = OFu 0%
L

with :Fwi' =m, xz"wl* +n,, ><z'W1* +FK,

FWz = d:WZI >de
L

with :F, =m,, ¢, +n,, 2, +FK,
FW3 = 62ng deb

L
with :F, =my, %2, +ny; %2, +FK,
FW4 - d:WAI >de

L
with :F,, =m,, %, +n,, 2, +FK,

+F,, *0OG

FW5 - d:WS' deb
L

with :F, =-F, X8G- F, xx,

Fu, = Fu, X%,
L

with :F,, = F, X,

Wy

These formulations of the hydrodynamic
exciting and reaction forces and moments
can only be used in the frequency domain,
snce a; and b ; both depend on the

frequency of motion w only and the
exciting wave loads have a linear relation
with the wave amplitude. In irregular
waves the response of the body can be
determined by using the superposition
principle, so using linear response
amplitude operators between motion and
wave amplitudes.

In the following figures, an example has
been given of the hydrodynamic potential
mass and damping and the wave loads for
roll in the frequency domain.
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4 Time Domain Calculations

As a result of the formulation in the
frequency domain, any system influencing
the behaviour of the floating body should
have a linear relation with the
displacement, the velocity and the
acceleration of the body. However, in alot
of cases there are severa complications
which perish this linear assumption, for
instance the non- linear viscous damping,



forces and moments due to currents, wind,
anchoring, etc.

To include these non-linear effects in the
vessel behaviour, it is necessary to
formulate the equations of motion in the
time domain, which relates instantaneous
values of forces, moments and motions.

For the description of the hydromechanic
reaction forces and moments, due to time
varying ship motions, use has been made
of the classic formulation given by
Cummins [1] with simple frequency
domain solutions of Ogilvie [14].

4.1  Cummins Equations

The floating object is considered to be a
linear system, with trandational and
rotational velocities as input and reaction
forces and moments of the surrounding
water as outpuit.

The object is supposed to be at rest at time

t=t,. Then during a short time Dt an

impulsive displacement Dx, with a
constant velocity V , is given to the object.
So:

Dx=V:Dt

During this impulsive displacement, the
water particles will start to move. When
assuming that the fluid is rotation-free, a
velocity potential F , linear proportional to
V , can be defined:

F=V:Y for t,<t<t,+Dt

in which Y is the normalised velocity
potential.

After this impulsive displacement Dx, the
water particles are still moving. Because
the system is assumed to be linear, the
motions of the fluid, described by the
velocity potential F, are proportiona to
the impulsive displacement Dx .

So:

F=c:Dx for: t>t,+Dt

In here, ¢ is a normalised velocity
potential.

The impulsive displacement Dx during the
period (t,,t, + Dt) does not influence the
motions of the fluid during this period
only, but also further on in time.

This holds that the motions during the
period (t,,t, + Dt) are influenced also by
the motions before this period.

When the object performs an arbitrarily in
time varying motion, this motion can be
considered as a successon of small
impulsive displacements.

Then the resulting total velocity potential
F(t) during the period (t,,t, +Dt)
becomes:

6
F) =8 v, %, +
j=1

+ én- [C j (tn— k ’tn- T Dt) Nj,k th]g

k=1
In here:

n number of time steps
t, =t, +n>Dt
t,, =t,+(n-k)xDt

S

\% j ™ velocity component during

period (t,,t, + Dt)

Vie ™ velocity component during
period (t, ..t . + D)

Y. normalised velocity potential
caused by a displacement in
direction j during period
(t,.t, +Di)

C. normalised velocity potential
caused by a displacement in
direction j during period
(ot + DY)

j.n



Letting Dt go to zero, yields:

F@t)=
:ée_})'(j(t)wj + t(‘j:j('[-t)><>'(j(t)><d'till'3
=11 -¥

where x;(t) is the ] velocity com-
ponent at time t.

The pressure in the fluid follows from the
linearised equation of Bernoulli:

An integration of these pressures over the
wetted surface S of the floating object
provides the expresson for the
hydrodynamic  reaction forces and
moments F,.

With n. as the generalised directional
cosine, F, becomes:

F=-@pn dS
S

.

=1 XA {%, (0 <@, 0, xdS+
i S

t . )

; 628@7“%1( O

¥ €s it a Z

When defining:
A, =1 Xx@Y; 0 xdS
S
ﬂcj(t- t)
® 1t

B, (t)=r xq

S

xn. xdS

the hydrodynamic forces and moments
become:

F =

g
=a

=1

i ' u
(A% (t)+ OBy (t- 1) ¢ )thtya

)
fori =1,2,...6

Together with the linear restoring spring
teems C;, xx, and the linear externa
loads X, (t), Newton's second law of

dynamics provides the linear equations of
motion in the time domain:

S, +A, )% 0+

j=1
t
+ OB, (t- 1) (1) Xt +C, ;o (0} = X, (©)
-y
fori =1,2,...6
in which:

X;(t) trandationa or rotational
acceleration in direction at time t

X;(t) trandationa or rotational velocity
indirection j at time t

X;(t) trandational or rotational

displacement in direction at time t
M, ; solid massor inertia coefficient

A, hydrodynamic mass coefficient
B, retardation function

C

X;(t) externa load in direction i

at time t

spring coefficient

When replacing in the damping part t by
t-t and changing the integration
boundaries, this part can be written in a
more convenient form:

{(Mi,j +Ai,j)xxj )+

. mom

«'u‘

OB, ) (t- 1) xdt +C, xx, (O} = X, (1)

fori =1,2,...6



Referring to the classic work on this
subject by Cummins [1], these six
equations of motion are called here the
"Cummins Equations'.

4.2  Hydromechanic Coefficients

The linear restoring spring coefficients
C3,3’ C3,5’ C4,4' C5,3 and C5,5 can be

determined easily from the under water
geometry and the centre of gravity of the
floating object. Generally, the other C; ;-

values are zero.

To determine A ; and B

potentials Y ; and c; have to be found,

which is very complex.
A much easier method to determine A |

the velocity

ij?

and B, ; can be obtained by making use of

the hydrodynamic mass and damping data
found with existing 2-D or 3-D potential
theory based computer programs in the
frequency domain. Relative smple

relations can be found between A ;, B,

and the caculated data of the
hydrodynamic mass and damping in the
frequency domain.

For this, the floating object is supposed to
carry out a harmonic oscillation x; with
amplitude 1.0 in the direction | :

X, =1>coswt)

A substitution in the Cummins Equations
provides:

- w? ><Mi,j + A,j)>COS(Wt)
- w%si,,.(tmn(\m- wt ) >t

+C,; ; >cos(vvt)
= X (t)
fori =1,2,...6

10

This results into:
1
2
-wW XM, + A - —X
A, +A, - =
¥ U

xCP.; t )>sin (wt )>dtg>cos(wt)

“w B, () xcosfwt )t %xsin(wt)
lo

In the classic frequency domain
description these equations of motion are
presented by:

- w? "{Mi,j +a1.‘j(w)}><cos(Wt)
- woAb,, w)}>an(wt)

"'{Ci,j}XCOS(Wt)

=X ()
fori=1,2,..6

In here:

a;; (w) frequency depending
hydrodynamic mass
coefficient

b, ; (W) frequency depending
hydrodynamic damping
coefficient

C | restoring spring term
coefficient

When comparing these time domain and
frequency domain equations - both with
linear terms as published by Ogilvie [14] -
it is found:

a ;W)=A - %Xc‘ﬁ,j(t)@'n(\l\/t )>dt

b, W) = oB (t ) xcosiwt ) >dit
¢;=GC,



After a Fourier re-transformation, the
damping term provides the retardation
function:

¥

B (t) :pz@i,j (W) xcoslwt ) >dw

0

Then the mass term follows from:

¥

Aj =, (0) + 5B ) sin (at) e

0

This mass expression is valid for any vaue
of w, soasofor w =¥ , which provides:

Aj =ai,j(wz¥)

4.3 Addition of Non-Linearities

So far, these equations of motion are
linear. But non-linear contributions can be
added now to X, (t) easily.
For instance, non-linear viscous roll
damping contributions can be added to X,
by:

DX, = - b, , A |

Also it is possible to include non-linear
spring terms, by considering the stability
moment as an external load and shifting its
contribution to the right hand side of the
equation of motion, for instance:

C,,=0
DX, =-r xgX\>GN, (f )>anf

in which m(f ) is the transverse meta
centric height at arbitrarily heeling angles.

44  SomeNumerical Recipes
Many computer programs fail when
caculating b ;(w) a too high a

11

frequency. This holds that - when
determining B, the numerica

calculations can be carried out in a limited
frequency range O £w £W only:

B, t) =p3xc‘joi,,- (w) xcosut )xciw

So, a truncation error DB, ;(t) will be
introduced:

DB, ,(t) =p3%>|,j (w) xcos(wt ) >dw

For the uncoupled damping coefficients -
sowhen i =j - this truncation error can
be estimated easily.

The relation between the damping
coefficient b, ; (w) and the amplitude ratio
of the radiated waves and the oscillatory
motion a;; (w) isgiven by:

r xg°

W3

b, W) = >ai,i2(W)

From this an approximation can be found
for the tail of the damping curve:

bii
b,; W)= F

The vaue of b,; follows from the

caculated damping value at the highest
frequency used, w =W. This holds that a

constant amplitude ratio a;;(w) is
supposed here for w >W.

Then the truncation error becomes:

. |,|p>{ 2 )f:\ CE)Vs\(tV;) Snv(\t\/\/t)
+g+In(W )+ né: : 12):1 1\2/:)!)% g



inwhich g = 0.577215... (Euler constant)

Studies carried out in the past have showed
that in case of a sufficient high value of W
the contribution of DB, into B,; is often

small. The potential damping calculations
were based on numerical routines as used
in computer program SEAWAY [8,9]. In
this program special attention has been
paid to the potentia calculations at very
high frequencies. For normal merchant
ships are 5 radians per second, which can
be reached by the routines in SEAWAY, a
farly good vaue for the maximum
frequency W.

Thus, the retardation function is
approximated by the numerical solution of
the integral:

B, () =p3xvép (w) rcosfat )t

The damping curve has to be calculated at
N, constant frequency intervals Dw, so:

N,, >Dw = W.

When calculating here the retardation
functions it assumed that at each frequency
interval the damping curve is linearly
increasing or decreasing; see Figure 4.
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Figure 4 Integration of Damping Curve

Now the contribution of this interval into
B, can be caculated analyticaly. This

holds that — caused by alarge w or alarge
t - the influence of a strongly fluctuating

12

cos(vvt) at this interval can be taken into
account.

Then the numerical integration, at constant
frequency intervals Dw , is given by:

2
B,t)= W x
NN N .e
A | o Aosft)- cosf, hy
+pi>{>‘bm an (WNWt )
in which:

Dw, =w,-w,_ , =Dw
Dbn :bn - bn—l

For t =0, the value of the retardation
function can be derived smply from the
integral of the damping:

B, (t =0) =§><V(vjn () xchw

Because the potential damping is zero for
w =0, the expression for the damping
term leads for w =0, so cosfwt ) =1, into

the following requirement for the
retardation functions:

¥

B, )=t =0

0

In the equations of motion, the retardation
function multiplied with the velocity
should be integrated over an infinite time:

Eﬁi’j(t )>X; (t-t)xdt

However, after acertaintime t =G, the

fluctuating values of the integra have
reached already a very small value.



A useful limit value for the corresponding
integration time can be found with:

o
a |Dhy|
n=1
p xDw e xB, ; (0)

G, =2

with: e » 0.010

So, the Cummins Equations, which are
still linear here, are given by:

8{Mm, +A, )% 0+

G,j
+ OB, ()% (t-t)xdt +C, xx, (O} = X, ()

fori =1,2,...6

The numerical integration can be carried
out with the trapezoid rule or with
Simpson’s rule. Because of a relatively
small timestep Dt is required to solve the
equations of motion numericaly, generally
the trapezoid rule is sufficient accurate.
The hydrodynamic mass coefficient
follows from:

Aj =ai,j(wz¥)

When this mass coefficient is not available
for an infinite frequency, it can be
caculated from a mass coefficient a a
certain  frequency w=W and the
retardation function:

Gi
Ay =8, (W +mx@B, () s (W) e
With:
G, =N, XDt

the numerical solution of this integral can
be found in an smilar way as for the
retardation functions:

{B,t =0)- Bt =t,, )xcos(WxN, Dt )}

in which:
DB, =B ,;(n)- B ;(n-1)

Similar to this, the numerical solution of
the frequency depending damping is:

Gj
b, ; (W) = (\j?’i,j(t )XCOS(\M )th :#x

s ] DB, v
ChEs Jcos(Wxnst )- cos(Wx(n- 1)x0x )][\;
n=1|
1 _ .
+oBu =t x ) >sin (W, Ot )
5 Equations of Motion

Integrating the velocities of the ship's
centre of gravity can derive the path of the
shipinthe (X,,Y,,2,) System of axes:

X, = X>XCosy - y»xdny

Yo = X>9ny + y>cosy

2,=12

£ o=f

do=9

Vo =y
The Euler equations of motion are written
inthe (x, Yy, Z) system of axes:



M >(x V¥ +z>1"):Xh+XW+Xext

M {y+ x5 - 2 )= Y, +Y, +Y,,

M ><(z >‘<>q'+y>f'):zh+zw+zm
1Lof - (1, - 1, )% =K, +K, +K,,
Ly o8- (1, - 1o)X % =M, + M, + M,
1% - (- 1, )% %6 = Ny + N, + N,

with in the right hand sides:

subscript h  linear hydromechanic loads
subscript w  linear wave loads
subscript ext non-linear hydromechanic

loads and (non)linear
external loads, caused by
wind, currents, anchor
lines, cutter, etc.

With the hydromechanic loads as defined
before, the equations of motion are defined
as given below.

Surge motion:
M xX + M ><( VX +z'>q)+
AL XX+B X+ Cy X+
A2+ B2+ C >z +

A.,5>q‘+Bl,5>q+Cl,5>q =XW+XE'>¢

Sway motion:
My +M 5oy - 2 )+
Az,z xy+ Bz,z Xy+Cz,2 xy +

A2,4 >f + BZ,4 >f + C2,4 >f +

Aed +Byg ¥ +Coey =Y, +Y
Heave motion:

M 2+ M- sog + yof )+

A?a1><X+B3,1XX+C3,1XX+

Ay, x2+ By, x2+Cy, 52+

A35>q'+B3’5>q.+C3’5>q:ZW+ZM
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Roll motion:
Lok - (1, - 1, )6y +
A4,2 xy+ B4,2 Xy+C4,2 Xy +

A, o+ B, o + C,. ¥ +
Ae¥ +B ¥ + C4,5 ¥ =K, + K

Pitch motion:
lyy>q_ (lzz_ lxx)# >y +
As,lxx-'-BS,lxx-'-CS,lxx-'-
A‘SB XZ+BS,3 ><Z+C5,3 XZ+

A5,5>q'+85,5>q'+05,5>q =M, +Mg,

Y aw motion:
Izz>y”_ (Izz_ Ixx)>¢>q+
A6,2 x'y+ Be,z xy+C6,2 Xy +
AG,4 >f + B6,4 >¢ +CG,4 # +

Ae¥ +Bge¥ +Cse% =N, +Ng,

Some of the coefficients in these six
equations of motion are zero. After
omitting these coefficients and ordering
the terms, the equations for the
accelerations are as follows.

Surge motion:
(M +A11)XX+ As q

X+ X
- B, %%- Bs g
+M ><(+y>y' - z>q)

Sway motion:
(M + Az,z)xy +AE A

Y, +Y,,
- Bz,z Xy - Bz,4 >‘f.' Bz,e ’y'
M- sy + 25f)



Heave motion:
(M +A, )2+ A

Z,+t 72y
- Basxz' C3’3><Z- Bas’d - C:3,5>q
+M X+ x> - y#')

Roll motion:
(l XX + '0‘4,4))f + A4,2 Xy+ A4,6 >y

Ky + Ko
- BA,Z xy- B4,4 >f‘ - B4,6 >S/' - C4,4 *
+(I w o I zz)>q >y

Pitch motion: )
(1, + A + AL s+ A, %2

M, +M,
- Bgy XX - By xz- Cg 5 %2- Bs,s’Q" Css9
+(Izz_ Ixx)>¢ )y

Y aw motion:

(1 o+ Ag) W + A, i+ A, 4

N, + N
- Be,z xy- 86,4 xf' - Be,e >y‘
-1, )%

With known coefficients and right hand
sides of these equations, the six
accelerations can be determined by a
numerical method as - for instance - the
well-known Runge-Kutta method.

Because of sometimes an extreme high
stiffness of the cutter dredge system, Delft
Hydraulics has adapted the numerical
solution method of these equations in
DREDMO for this; see [13].
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6 Viscous Damping

Sway and Yaw

The non-linear viscous sway and yaw
damping term in the equations of motion
for sway and yaw can be approximated by:

b,,, “¥{yxy and by, A |y

with:
@ _1
b, —Exr XL xd >C
@ _1 3
D 6, —gxr XL xd xC
C, »1.50
Roll

The total non-linear roll damping term in
the equation of motion for roll can be
expressed as.

[bu #1141y, @ of o

with:

b,, linear potential roll damping
coefficient

b, " linear(ised) additional roll damping
coefficient

b4,4a(2) non-linear additional roll damping
coefficient

The linear potential roll-damping coeffi-
cient b,, can be determined as described

before.

For time domain calculations a linear as
well as a non-linear roll-damping
coefficient can be used. However, for
fregquency domain  caculations an
equivalent linear roll-damping coefficient
has to be estimated. This linearised roll-
damping coefficient can be found by
requiring that an equivalent linear damping
dissipate an equal amount of energy as the
non-linear damping, so:



T T
b, ,, ¥ x(‘j. Kot = b4,4a(2) xfb(| f & xdt
0 0

Then the equivalent linear additiona roll-
damping coefficient b4’4a(1) becomes:

8

@ — (2
b, =X, wx,,
3:p

The additional roll damping coefficients
b, " and b,, ¥ are mainly caused by

viscous effects. Until now it is not possible
to determine these additional coefficients
in a pure theoretica way. They have to be
esimated by free rolling mode
experiments or by a semi-empirica
method, based on theory and a large
number of model experiments with
systematic varied ship forms. The
linear(ised) and the non-linear equations of
pure roll motions, used to anayse free
rolling model experiments, are presented
here. Also, for zero forward ship speed,
the algorithms of the empirical method of
Ikeda, Himeno and Tanaka [3] are given.

6.1 Experimental Roll Damping

In case of pure free rolling in still water,
the linear equation of the roll motion about
the centre of gravity G is given by:

(l ot a4,4)>f" + (b4,4 + b4,4a )’f' +Cya =0

in which:

a,, potential mass coefficient

b,, potential damping coefficient

b,, linear(ised) additional damping
coefficient
c,, restoring term coefficient

This equation can be rewritten as.

f+2nf +w, f =0
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4t b4,4a

: : b,

in which 2n =
Ixx + a4,4

between damping and moment of inertia

Is the quotient

Caa
I +3,,

XX

natural roll frequency squared.

and w,’ = is the not-damped

When defining a non-dimensiona roll

damping coefficient by:

the equation of motion for roll can be
rewritten as:

f+ 25 w, f +w, ¥ =0

Then, the logarithmic decrement of rall is:

n:T, =k:w,:T,
f@ 9
éf (t+T) 5
Because of the relation w,”=w,”-n?

and the assumption that n2 <<w,’, it can

be written w, »w, .
This leads to:

Wo X »w X =23

So, the non-dimensional total roll damping
is given by:
1 2 owit) ¢

k = :
2p - gwlt+T )5

= (b4,4 + b4,4a)xz>vz:—i4



The non-potential part of the total roll-
damping coefficient follows from the
average value of k by:

2XC
bA,Aa =k x_ A4 _ b4’4
WO

When data on free-rolling experiments
with a model in still water are available,
these k -values can easily been found.

Often the results of these free rolling tests
are presented by:

[fz 2 asfunction of f _,

a

with f, as the absolute value of the

average of two successive positive or
negative maximum roll angles:

c_[®+f L+
a — 2 |

and Df , as the absolute value of the

difference of two successive positive or
negative maximum roll angles:

Df , =f ,()-f.G+D|

Then the tota non-dimensional naturd
frequency becomes:

8
+

g|

o

[N

vO) O O

QI =
QO

Q

oo
|

o

[\ 1R E

These experiments deliver no information
on the relation with the frequency of
oscillation. So, it has to be decided to keep
the additional coefficient b,, or the total

coefficient b, , +b, , constant.
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The successively found vaues for Kk,
plotted on base of the average roll
amplitude, will often have a non-linear
behaviour asillustrated in Figure 5.

For behaviour like this, it will be found:

k =k, +k, > ,

saperiments ficted by:

Eq =kacPg

Figure5 Free Rolling Data

This holds that during frequency domain
caculations, the damping term s
depending on the solution for the roll
amplitude.

For rectangular barges (LxBxd) with the
centre of gravity in the water line, it is
found by Journée[7]:

.2
k, » 0.0013-820
edg

k, »0.50

Then the total roll-damping term becomes:

i 2x,,0 . 1 23,0 .
Tk 205 =1k, +k, of L)ty of
) Wo ) Wo t;

The linear additional roll-damping coeffi-
cient becomes:

But for the non-linear additional roll-
damping coefficient, a quasi-quadratic
damping coefficient is found:



2xc,, f
b, ,, ¥ =k, x4k

Because this roll-damping "coefficient”
includes |f'(w,t)| in the denominator, it

varies strongly with time.

An equivalent non-linear damping term
can be found by requiring that the
equivalent quadratic damping term will
dissipate an equal amount of energy as the
guasi-quadratic damping term, so:

T
(2 e
b,..,” *cf
0
Ti

2x,, -
:k2 XW—’#axd ¥ >t

0 0

X >f xdt =

Then the equivalent quadratic additional
roll-damping coefficient b4,4a(2) becomes:

With this, the roll-damping term based on
experimentally determined k -values, as
given in Figure 5, becomes:

(b4,4 +by, )’f. +b,, >1f| A =
toE i E ER g4

So far, pure roll motions with one degree
of freedom are considered in the equations
of motion Coupling effects between the
roll motion and the other motions are not
taken into account. This can be done in an
iterative way.

Experimental or empirical values of k,

and k, provide starting values for b,,

and b4’4a(2) . With these coefficients, a free-
rolling experiment with all degrees of
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freedom can be simulated in the time
domain. An anayse of this simulated roll
motion, as being a linear pure roll motion
with one degree of freedom, delivers new

values for b4'4a(1) and b4'4a(2). This
procedure has to be repeated until a
suitable convergence has been reached. An
inclusion of the natural frequency w, in

this iterative procedure provides also a
reliable value for the estimated solid mass

moment of inertia coefficient |, .

However, this procedure is not included in
DREDMO yet.

6.2 Empirical Roll Damping

Because of the additional part of the roll
damping is significantly influenced by the
viscodgity of the fluid, it is not possible to
calculate the total roll damping in a pure
theoretical way. Besides this, experiments
showed aso a non-linear (about quadratic)
behaviour of the additional parts of the roll
damping.

As mentioned before, the total non-linear
roll damping term in the left-hand side of
the equation of motion for roll can be
expressed as.

(b, +b,, @)% +b,, @ o |4

For the estimation of the additional parts
of the roll damping, use has been made of
work published by Ikeda, Himeno and
Tanaka [3]. Their empiricd method is
called here the “Ikeda Method”.

At zero forward speed, this |keda method
estimates the following components of the

additional roll-damping coefficient of a
ship:

b4,4a ® =0

(2 — (2) (2) (2)
b4,4a —Maa, +b4,4e +b4,4k

with:



b, ¥ non-linear friction damping
b, 4e(2) non-linear eddy damping

b4,4k(2) non-linear bilge keel damping

Ikeda, Himeno and Tanaka claim fairly
good agreements between their prediction
method and experimental results.

They conclude that the method can be used
safely for ordinary ship forms. But for
unusual ship forms, very full ship forms
and ships with a large breadth to draught
ratio the method should not be aways
sufficiently accurate.

Even a few cross sections with a large
breadth to draught ratio can result in an
extremely large eddy-making component
of the roll damping. So, aways judge the
components of this damping.

In the description of the Ikeda method, the
nomenclature of lkeda is maintained here
asfar aspossible:

r density of water
n kinematic viscosity of water
g acceleration of gravity

w circular roll frequency

roll amplitude

Reynolds number

length of the ship

breadth of the ship
average draught of the ship
block coefficient

hull surface area
distance of centre of gravity above

still water leve
B sectional breadth on the water line

D sectional draught

S sectional area coefficient

H, sectiona half breadth to draught
ratio

a sectional Lewis coefficient

a, sectional Lewis coefficient

M sectional Lewis scale factor
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r average distance between roll axis
and hull surface

h, height of the bilge keels

L, length of the bilge keels

re distance between roll axis and bilge
keel

f, correction for increase of flow
velocity at the bilge

C pressure coefficient

I lever of the moment

y local radius of the bilge circle

For numerical reasons two restrictions
have to be made during the sectional
calculations:

- if s, >0.999 then s . =0.999
- if OG<-D,>s then OG =-D, s,

6.2.1 Frictional Damping, b, ,

Kato deduced semi-empirical formulas for
the frictional roll-damping from experi-
mental results of circular cylinders, wholly
immersed in the fluid.

An effective Reynolds number for the roll
motion was defined by:

05124, %, ) w
n

In here, for ship forms the average
distance between the roll axis and the hull

surface r, can be approximated by:

S __
(0.887+0.145>C,) fo +2.0>0G

re =
p

with a wetted hull surface area S, ,
approximated by:

S, =L X1.70xD +C, xB)



When eliminating the temperature of
water, the kinematic viscosity can be
expressed in the density of water with the
following relation in the kg-m-s system:

- fresh water:

n x10° =1.442 +0.3924r - 1000)

+0.07424Xr - 1000)° m’s
- Seawater:

n x10° =1.063+0.1039qr - 1000)
+0.02602Xr - 1000)° m’s

Kato expressed the skin friction coefficient
as:

0.500 -0.114

C, =1.328xR " +0.014 xR,
The first part in this expression represents
the laminar flow case. The second part has

been ignored by lkeda, but has been
included here.

Using this, the non-linear roll-damping
coefficient due to skin friction at zero
forward speed is expressed as.

— 3
b,,, = XS,

Cy

NI
X

Ikeda confirmed the use of this formula for
the three-dimensional turbulent boundary
layer over the hull of an oscillating
élipsoid in roll motion.

6.2.2 Eddy-Making Damping, b4,4e(2)

At zero forward speed the eddy making
roll damping for the naked hull is mainly
caused by vortices, generated by a two-
dimensional separation. From a number of
experiments with two-dimensional
cylinders it was found that for a naked hull
this component of the roll moment is
proportional to the roll velocity sguared
and the roll amplitude. This means that the
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non-linear roll-damping coefficient does
not depend on the period parameter but on
the hull form only.

When using a ssimple form for the pressure
distribution on the hull surface it appears

that the pressure coefficient C, is a

function of the ratio g of the maximum
relative velocity U,, and the mean

velocity U, ., on the hull surface:
— U max
J U

mean

The relation between C, and g was
obtained from experimental roll damping

data of two-dimensional models.
These experimental results are fitted by:

C, =0.4355 ¢ - 2.0% ™*"® +1.50

The value of g around a cross-section is

approximated by the potential flow theory
for a rotating Lewis-form cylinder in an
infinite fluid.

An estimation of the sectional maximum
distance between the roll axis and the hull

surface, r,., , has to be made.
Vauesof r, ) have to be caculated
for:

y =y,=00
and:
a, 1 +ae)

y =y, = 05><arccosg

Thevaluesof r_ (v ) follow from:

o) =
a,)snfy )- a,xdn(@y )} +

- J{(1+
{0 a) oy )+ a,eoslay )

With these two results, r,,
from the conditions:

and y follow



- if rmax6/1)>rmax6/2) then:
rma<:rmax(y1) andy :yl
- if I’maxc/ 1)<rmax(y 2) then:
M = Tmac & 2) @AY =y,

The relative velocity ratio g on a cross
section is obtained by:

Jp xt,

2XD XJH ><§§ +
s 0 S
Ds
>g"rm(+ S x/a?+b? =
e a

H

g:

8|
Q11O
X

@)

with:

H =1+a°+9xa,’
+2xa, {1- 3xa,)>xcos(2y )
- 6>, xcos(4 % )

a=-2x,xos5% )
+a, {1~ a,)xcos(3y )
- 30)a, +(a’ - 30, b,
+a12}>cos(y)

b=-2xa,6n(5% )
+a,{1- a,)>sin(3y )
He+3m,)x, + (a7 +3%,),
+a”psinf )
f3 :1+4xe—1655105>(1—ss)2
With this a non-linear sectional eddy

making damping coefficient for zero
forward speed follows from:
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2
5, = L0 Fo Yo
2 D, g
M . a - _ \6
1 e e g
1 Ds (4] Ds e Ds Ub
2
f, xR, ¢
ot - 2R
D, oh
with:
f, =0.5X1+ tanh (20> _ - 14.0)}
f, =051- coslp s )}
- 15f1- % hein?(p s )
The term between sguare brackets
é fix,u :
éD—Q is included in the program
e s U

listing in the paper of Ikeda et. al. [3], but

it does not appear in the formulas given in
the paper. After contacting Ikeda, this term
has been omitted in SEAWAY and

SEAWAY-D.

The approximation of the local radius of
thebilgecircle R, is:

for R, <D, and R, <B,/2:

H -1
Rb=2><DS></°— 6.-1)
p-4

for H,>1 and R, >D.:
R, =D

for Hy <1l and R, <H,xD,:
R,=B/2

For three-dimensional ship forms, the zero
forward speed eddy-making damping
coefficient is found by integration over the
ship length:



bya,? = (B xax,
L

6.2.3 BilgeKeel Damping, b, , *

The bilge kel component of the non-

linear roll-damping coefficient is divided

into two components:

- acomponent B, due to the normal
force of the bilge keels

- acomponent B due to the pressure an
the hull surface, created by the bilge
keels.

The normal force component B, of the

bilge keel damping can be deduced from

experimental results of oscillating flat

plates. The drag coefficient C_ depends

on the period parameter or the Keulegan-

Carpenter number. lkeda measured this

non-linear drag also by carrying out free

rolling experiments with an ellipsoid with

and without bilge keels.

This results in a non-linear sectional

damping coefficient:

B, =r. %, xf > xC,
with:

h
C, =225%——*% — +2.40
p >q‘k >¢ a ><fk

f, =1.0+0.3> 140

The local distance between the roll axis
and the bilge kedl, r,, will be determined
further on.

Assuming a pressure distribution on the
hull caused by the bilge keels, a non-linear
sectiona roll-damping coefficient can be
defined:

1 i
B =E>¢k2 xf > %0, ¥, >dh
0

Ikeda carried out experiments to measure
the pressure on the hull surface created by
bilge keels. He found that the coefficient

Cp+ of the pressure on the front-face of

the bilge keel does not depending on the
period parameter, while the coefficient
C, of the pressure on the back-face of
the bilge keel and the length of the
negative pressure region depend on the
period parameter.

Ikeda defines an equivalent length of a
constant negative pressure region S, over

the height of the bilge keels, which is fitted
to the following empirical formula:

S, =0.30>p xf, 1, f , +1.95%,

The pressure coefficient on the front-face
of the bilge keel is given by:

C, =120

The pressure coefficient on the back-face
of the bilge kel is given by:

h

C, =-225x——-120

P p X, xf, f

a

The sectional pressure moment is given
by:

hépp A, xch = D,” - AC + B>Cp+)

0

with:

B= M,
3xH, - 0.215xm,)
, - m)* X{2xm, - m,)
6x{1- 0.215>m,)
+m, {m, >my +m, xm,)




while:

-R
m, D,

_-0G
m, = ——

DS

m,=1.0-m-m,
m4:Ho' m,

10.414xH, +0.0651xm,> {l
. 1- (0.382> , +0.0108) smy)
> (H, - 0.215xm,)<1- 0.215xm,)

0.414xH, +0.0651>m,*
- (0.382+0.0106xH ,) my}
(H, - 0.215%m,)¥{1- 0.215xm,)

For S, >0.25 xR :

S
D

S

m, = 2. 0.25xp xm,

m; =m, +0.414 xm,
For S, <0.25p xR;:

m, =0.0

i
m, = m, +0.414xm, x1- Cos?i%
i R &

The approximation of the local radius of
the bilgecircle, R,, is given before.

The approximation of the local distance
between the roll axis and the bilge ked,
r.,isgiven as:

.2
gﬂo 020322 4
Ds 4]
—_— .2
=S (0]
0+2C . 0203 2
Ds Ds ﬂ

The total bilge ked damping coefficient
can be obtained now by integrating the
sum of the sectional roll damping

coefficients B, and B, over the length
of the bilge keels:

b, 4, = dBNI + le)’de

Lk

7 Compar ative Simulations

As far as ship motions are concerned,
SEAWAY-T is an equivaent of
DREDMO. To check the calculation
routines for the time domain, as used in the
pre-processing program SEAWAY-D and
in the time domain program SEAWAY-T,
comparisons have been made with the
results of the frequency domain program
SEAWAY [8] for anumber of ship types.

An example of the results of these
validations is given here for the S-175
containership design in deep water, as has
been used in the Manua of SEAWAY too,
with principal dimensions as given below.

Length between perp., L,, 17500 m

Breadth, B 2540m
Amidships draught, d., 9.50m
Trim by stern, t 0.00m
Block coefficient, Cy 0.57

Metacentric height, GM 0.98 m

Longitudinal CoB, L.,/L, -1.42%

pp

Radius of inertia, k,, /L, 0.33
Radius of inertia, k,, /L, 0.24



Radius of inertia, k,, /L, 0.24
Height of bilge keels, h, 045m
Length of bilge keels, L, 43.75m

The body plan of this container ship design
is given in the Figure 6.

Figure6 Body Plan S-175 Ship

This S-175 containership design had been

subject of several computer and

experimental studies, co-ordinated by the

Shipbuilding Research Association of

Japan and the Seakeeping Committee of

the International Towing Tank Conference

[4,5]. Results of these studies have been

used continuously for validating program

SEAWAY after each modification during

its development.

For this ship, the motions have been

calculated in the frequency domain and in

the time domain a zero forward ship

Speed.

Additional data, used during the time

domain simulations, are:

- maximum frequency of damping
curves. W=5.00 rad/s

- frequency interval: Dw =0.05 rad/s

- maximum time in retardation
functions: G ; =50.00 s

- timeinterva: Dt =025 s

The potential coefficients and the
frequency characteristics of the wave loads
a zero forward speed, calculated by
SEAWAY-D, have been input in
SEAWAY-T and the calculations have
been carried out for a regular wave
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amplitude of 1.0 meter. Extra attention has
been paid here to the roll motions. In both
calculations, the viscous roll damping has
been estimated with the Ikeda method. In
the frequency domain, the results are
linearised for this wave amplitude of 1.0
meter. Because of the relatively small roll-
damping a zero forward speed, in the
natural frequency region the initia
conditions of the wave loads will occur
unstable roll motions in the time domain.
Then, a long simulation time is required to
obtain stable motions.

The agreements between the amplitudes
and the phase lags of the six basic motions,
calculated both in the frequency domain
and in the time domain, are remarkably
good. Some comparative results of the six
motion amplitudes of the S$175
containership design are given in Table l.
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for S-175 Ship



Comparisons for a rectangular barge (100
x 20 X 4 meter), with hoppers (25 x 14
meter) fore and aft, are given in Table Il
for the natura roll frequency region. The
experimenta roll damping data were input
here.

() ®Watiors

selculated by EENMAT oo BENGRY-T respectivaly |
Freg.

a Ia A u Al

a
radis) m ] L} teyl (gl (egl | PAOGRRM

0.3 0518 0451 0.0 ©.501 0,448 0,28
[ 1 [ ] a.57 .50 [ | B2z

SEAMRY
SEAY-F

0.4 [ .31 0.viF RN 0. e | 0ars
0.Th [ 053 | 1.5 0. 0.38

SEANRY
SEMEN-F

0.5 0.47% Y] .04 0,868 1.0 0,51
067 [ .84 0.&7 1.9% 053

BEMRY
SEANAY-F

Tablell Comparison of Computations

for a Barge with Hoppers

Based on these and a lot of other
comparisons between the time domain and
the frequency domain approaches for
linear systems, it may be concluded that
SEAWAY-D + SEAWAY-T has an equd
accuracy as the frequency domain
predictions of these linear motions by the
parent program SEAWAY .

This concluson holds that the pre-
processing program SEAWAY -D provides
reliable results.

8 Conclusions and Remarks

This new release of SEAWAY -D includes
the use of local twin-hull cross-sections,
the N-Parameter Close-Fit Conformal
Mapping Method and (non)linear viscous
roll damping coefficients. Specia attention
has been paid to longitudina jumps in the
cross sections and fully submerged cross-
sections. Also, improved definitions of the
hydrodynamic potential masses at an
infinite frequency and the wave loads have
been added.

Based on a lot of comparisons, made
between the time domain and the
frequency domain  approaches  for
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linear(ised) systems, it may be concluded
that the computer codes SEAWAY-D and
SEAWAY-T have an equal accuracy as
the frequency domain predictions of these
linear(ised) motions by the parent code
SEAWAY.

This concluson holds that the pre-
processing program SEAWAY-D delivers
reliable results. It is advised however to
carry out a similar validation study with
the computer codes SEAWAY-D and
DREDMO too.
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